Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite using response surface methodology
Authors
Abstract:
The photocatalytic degradation of methylene blue was investigated with TiO2 and Fe2O3 nanoparticles supported on natural zeolite. The synthesized photocatalyst was characterized by XRD, XRF, FT-IR, EDX, FE-SEM, and BET analyses. The results of XRD, FT-IR, and EDX confirmed the successful loading of Fe3+ doped TiO2 nanoparticles on natural zeolite. Further, the FE-SEM results confirmed the deposition of TiO2/Fe2O3 on the zeolite, with the approximate particle size being 52.3 nm. According to the XRF results, the synthesized nanoparticles had Fe3+/TiO2 molar ratios of 0.06 in the synthesized photocatalyst. Based on BET analysis, the surface area of TiO2/Fe3+/natural zeolite was about 112.69 m2/g. The effects of operational factors such as pH (6-10), dye concentration (25-75 mg/L) and H2O2 concentration (10-40 mg/L) were considered and optimized via response surface methodology utilizing Box-Behnken design. The optimization results indicated that the maximum percentage of degradation was achieved at a dye concentration of 25 mg/L, initial pH of 10, and H2O2 concentration of 40 mg/L with a 90 min irradiation time and a 1 g/l photocatalyst concentration. The dye degradation efficiency reached 92% under this optimum condition.
similar resources
Preparation, characterization and photocatalytic activity of B, La co-doped mesoporous TiO2 for methylene blue degradation
Mesoporous titanium dioxide co-doped with boron and lanthanum has been prepared by template method using boric acid triethyl ester, lanthanum nitrate hexahydrate and tetrabutyl titanate as precursors and Pluronic P123 as template. The as-prepared photocatalyst is characterized by thermogravimetric differential thermal analysis, N2 adsorption-desorption measurements, X-ray diffraction, scanning ...
full textpreparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis
کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.
Photocatalytic degradation of methylene blue by 2 wt.% Fe doped TiO2 nanopowder under visible light irradiation
In this paper, 2wt.% Fe doped TiO2 nanopowder was prepared by a combination of sol-gel and mechanical alloying methods. The mechanical alloying of Fe powder with Ti(OH)4 gel produced from the sol-gel method was used to produce Fe doped TiO2 nanopowder. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectan...
full textPreparation, Characterization, and Application of Nanospherical α-Fe2O3 Supported on Silica for Photocatalytic Degradation of Methylene Blue
In the research, spherical α-Fe2O3 NanoParticles (NPs) were synthesized through Forced Hydrolysis and Reflux Condensation (FHRC) process and were supported on the surface of silica sand by Solid-State Dispersion (SSD) method. Characterization of silica and α-Fe2O3/SiO2 catalyst was done using Fourier-Transform InfraRed (FT-IR) spectrosc...
full textInvestigation of UV/TiO2-N photocatalytic degradation of AR 40 using response surface methodology (RSM)
Introduction: Advanced oxidation processes (AOPs) suggest a highly reactive, nonspecific oxidant namely hydroxyl radical (OH•), that oxidize a wide range of pollutants fast and non-selective in wastewater and water. Materials and methods: In this work, the nitrogen-doped titanium dioxide nanoparticles were primed by sol-gel method, characterized by X-ray diffraction and Scanning Elect...
full textResponse surface methodology for optimization of Phenol photo-catalytic degradation using Carbon-doped TiO2 nano-photocatalyst
In this research, Carbon-doped TiO2 nano-photocatalyst is synthesized via sol-gel technique and photo-catalytic degradation of phenol has been studied under ultraviolet and visible light irradiation in a fluidized bed reactor. Various techniques are used to characterize TiO2 nano-photocatalyst such as X-Ray Diffraction, Fourier transform infrared spectroscopy, Energy Disp...
full textMy Resources
Journal title
volume 3 issue 4
pages 205- 216
publication date 2017-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023